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Section 1: Introduction

1.1 Development of Initial Research Project

The initial research report released by SOM dated May 6™ 2013 includes recommendations for
additional research and physical testing. These recommendations apply to both general mass-
timber systems and SOM'’s proposed “Concrete Jointed Timber Frame” (CJTF) system. This
report consists of detailed analysis of the gravity framing components of the overall CJTF system
as recommended in the initial report. This portion of the overall system was chosen for additional
research first because it represents the majority of materials used in the structure, making it a
primary consideration in overall cost and carbon footprint and also involves untested connection
detailing not typical of timber construction. The gravity framing system includes the composite
mass-timber floor planks, reinforced concrete spandrels, and reinforced concrete joints which
connect to the vertical mass-timber elements.

1.2 Purpose of Report

The purpose of this report is to provide detailed structural system information and expected
behavior that could inform a physical testing program of the gravity framing system.

1.3 Report Objectives
The research on the gravity framing system has the following objectives:

e Review design and acceptance criteria for the gravity framing system

e Analyze the gravity system for a general arrangement of vertical bearing elements
e Report the system design behavior (deflections, vibrations, strength requirements)
e Determine potential structural details which could achieve the acceptance criteria
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Section 2: Gravity Framing System Description

2.1 System Description

For the purposes of this report, the gravity framing system is defined as the structure which
directly supports floor loads. The gravity framing system consists of composite mass-timber
planks which primarily span ‘one-way’ between mass-timber shear walls and mass-timber
columns. The composite timber planks consist of mass-timber planks such as Cross-Laminated
Timber (CLT) with a precast concrete composite topping. The planks are moment connected to
the timber walls with a reinforced concrete joint which runs along the length of the wall. The
composite timber planks are moment connected to the timber columns with a reinforced
concrete beam and joint at the column. Study of the connections of the joints is included in the
scope of the report. The columns and walls are included only from the perspective of support
stiffness. The layout of the gravity framing system studied is shown in Figures 1-1 to 1-3. This
study layout is a general system layout which would be part of the overall floor structure. The
applicability of this generalized study layout is highlighted in Figure 1-4.

The system shown in Figures 1-1 to 1-3 differs from that in the original report. The primary
change relates to the concrete topping slab which is required to control acoustics. The topping
slab required for acoustics has been changed from a non-structural topping to a composite
structural topping. The topping slab documented in this report is a 2 inch thick normal weight
composite structural topping. It is expected that the mass-timber planks will be ‘pre-topped’,
meaning the topping slab is cast on top of the mass-timber planks off-site, or on-site prior to
erection. The topping slab is therefore referred to as ‘precast’ in this report. Since the topping
slab is now designed to be a structural element, normal weight concrete was chosen over
lightweight concrete due to the higher material stiffness. This change to a precast structural
composite topping allows for a thinner overall ceiling sandwich, reduced field work, and simplified
moment connections. This decision was based in part on a contractor review of the initial system
which is summarized in Appendix 1.

Composite flexural behavior between the CLT floor plank and precast concrete topping slab is
achieved by providing a horizontal shear connection at the interface of the two materials. This
connection must be ductile under ultimate loads yet stiff in service to minimize slip and
additional deflections. Several connection types have already been developed and tested to
achieve this goal [10]. Shear connection details developed to date have been focused on simply
supported floors where the concrete topping slab is in compression. The CJTF system proposed
in this report may require additional research and testing related to composite floor behavior due
to the negative bending of the floor system which applies tension to the topping slab. New shear
connectors which function in cracked concrete may need to be developed as a result. New
concepts for shear connectors are provided in this report.
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Figure 1-2: Elevation Geometry — Primary Span Direction
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2.2 Study Geometry

The geometry studied was selected to represent the most typical layout for high-rise apartment
construction. The geometry of the study follows the guidelines from Section 4 of the initial report.
The lease span chosen was 29’-0”, the maximum dimension for a rental apartment. The clear
ceiling height in the living space was chosen to be 8-6”, the maximum dimension noted in the
initial report. Columns follow an exterior wall module of 4’-0". The spacing of columns along the
perimeter of the building would likely be variable in practice but was set as a constant for this
study. The partition spacing for the prototypical building in the initial report was most typically
16’-0" on center and thus chosen for the column spacing in this study.

2.3 Structural Component Details

The current design configurations for the structural components for this report are shown in the
following figures:

Composite Mass-Timber Floor Planks: Figures 2-1, 2-2
Floor Plank End Moment Connections: Figure 2-3
Reinforced Concrete Spandrel Beam: Figure 2-4
Reinforced Concrete Spandrel Splice: Figures 2-5, 2-6
Reinforced Concrete Column Joint: Figures 2-7, 2-8
Reinforced Concrete Wall Joint: Figure 2-9

The details shown in this section represent one potential way to achieve the desired behavior of
the system. It is anticipated that these details will be refined by structural researchers through
physical testing programs and by contractors through costing evaluations. The details shown in
Appendix 3 should also be considered in addition to the base details of this section.
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Figure 2-1: Composite Timber Floor Section — Primary Span

Notes: Composite action is achieved with the horizontal shear connectors shown. The
shear connectors could consist of a steel plate connected to the CLT with epoxy and to
the concrete with perforations in the plate, headed studs, or another protruding steel
element (bolt head or threaded rod) which bears on the concrete. The placement and
geometry of the shear connectors must consider fire resistance and char depths.
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Figure 2-2: Composite Timber Floor Section — Transverse Span

Notes: A lapped CLT connection is anticipated. The vertical position of the ledge is
shown above mid-thickness to limit exposure to charring in a fire. The size and spacing
of screws would be designed to resist diaphragm shears due to lateral loading. The
topping slab is field grouted at this location. The welded wire fabric must be ‘field bent’
outward at this location to avoid clashing with the adjacent floor planks during erection.
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Figure 2-3: Typical Floor Plank End Moment Connection

Notes: The tension component of the end moment is resisted with a top reinforcing bar.

The lap splice of the main top bar is a “Class B” splice since this is a tension critical

location. Welded wire fabric above the splice is provided to restrain longitudinal cracking
and aid in the development of the main bars. The main top bars are connected to the
precast concrete with a mechanical coupler since “bend out” bars at this location may
be difficult to construct. The compression component of the end moment is design to

be resisted entirely by the epoxy connected steel plate on the bottom surface of the
plank. This approach limits potential losses in stiffness due to shrinkage in the CLT
plank, grouted connection, or precast concrete element. The compression in the plate is
transferred to the precast concrete element through masonry screws. Masonry screws
are chosen over protruding threaded rods to allow for greater setting tolerance. The
compression plate is expected to be compromised in a fire event. The compression

component of the negative bending moment is expected to be transferred by bearing
between the CLT and grouted connection in a fire event.
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Notes: The splice as shown has shop bolted connection plates to the welded angles.

These connections could be shop welded instead.
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points of the beam. A more economical beam splice detail may be possible when
splices occur near inflection points, as shown in Figure A3-5.
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Figure 2-7: Typical Column Joint Detail #1
Notes: The connection of the column above and below to the precast joint is intended to

be a precast/shop connection. The expected fabrication sequence is to connect the
vertical dowels to the columns, place the reinforcing for the spandrel beam and joint,
and then cast the spandrel beam with the columns off-site. Column splices occur 4 ft
above the floor elevation and occur on every other floor.
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Figure 2-9: Typical Wall Joint Detail
Note: This detail follows a similar logic as Figure 2-7, with geometry adjusted for the wall.
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2.4 Gravity System Design Behavior

The gravity system has been designed such that end rotation of the composite floor planks is
restrained by the flexural stiffness of the columns and walls. Verification of this expected behavior

is the primary aspect that requires physical structural testing for verification. The desired
structural behavior is discussed below:

Floor Load Path: Figure 2-10
Composite floor planks span gravity load to the supports
Spanning creates horizontal shear between the timber and topping

e Floor planks bear on the concrete beam edge
e Floor plank end rotation is resisted by the typical moment connection

Spandrel Beam Load Path: Figure 2-11

e Spandrel beam spans floor plank reactions between columns
e Spandrel resists floor end moment with torsion near columns

Vertical Element Load Path: Figure 2-12

e Column/wall resists floor end moments in bending
e Column/wall shear reacts with levels above and below

Construction Sequencing Considerations: Figure 2-13

e Additional dead load deformation due to sequencing
e Reduced end moments due to sequencing
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Section 3: Design Criteria

3.1 Loading Criteria
The gravity framing system is analyzed and designed for the following loads:
Dead Load: Calculated based on design dimensions

e Density of mass-timber: 30 Ib/ft?
e Density of concrete: 150 Ib/ft® (considering reinforcement)
e Sustained/Expected load: 100%

Superimposed Dead Load: Partitions + CMEP

e Total Floor Load: 30 Ib/ft?
e Exterior Cladding Load: 20 Ib/ft? on vertical surface area
e Sustained/Expected load: 85%

Live Load: Residential Occupancy per ASCE/SEI 7-10 [1]

e Total: 40 Ib/ft?
¢ Reduction: Possible for columns and spandrels but not considered
e Sustained/Expected load: 15% (6psf mean load per ASCE/SEI 7-10 Table C4-2)

3.2 Deflection Criteria
The gravity framing system designed to satisfy the following deflections:
Live Load: Deflection < Span/360
e Span measured center-to-center of supports
Total Load: Deflection < Span/240

e Span measured center-to-center of supports
e Includes long term deflections due to creep in timber and concrete
e Long term modifier taken as 2.0 based on [2] and [3]

3.3 Strength Criteria

The gravity framing system was designed to satisfy strength requirements of ACI-318 [2] and
NDS-2012 [3] where applicable. Components outside the scope of these codes such as the
bending strength of the composite floor section are evaluated with a first principles approach and
will need to be confirmed with physical testing.

3.4 Vibration Criteria
The gravity framing system is designed to satisfy vibrations per AISC DG11 [4, 7].
Chapter 4: Design for Walking Excitation
e Residences: P, = 65lb, B = 0.05, a,/g < 0.005
Chapter 6: Design for Sensitive Equipment (velocity-based method)
e Tactual Perception Threshold: V = 8000uin/sec, Moderate Walking Pace
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Section 4: Analysis Model

4.1 Model Description

Overall Description

The gravity system model for the concrete-jointed timber frame (CJTF) consists of five bays of
composite mass-timber floor supported on the exterior by mass-timber columns and interior by
mass-timber walls. The plan view of the analytical model is shown in Fig. 4-1.

The mass-timber floor has a clear span of 27’-0” with a narrow grout strip connecting the floor to
the concrete joints located along the exterior column line and the interior wall line. The grout strip
connection link is modeled using horizontal beam elements at each node of the floor mesh.

Walls are 1’-0” thick and are modeled 6'-0” above and below the floor. There are three 6’-0”
openings spaced evenly along the length of the model.

Wall and floor geometry is modeled using shell elements. All shells are modeled with
quadrilateral mesh with maximum size of 6”x6”.

Timber columns are 2’-0” x 2’-0” and are modeled 6’-0” above and below the floor (to the
approximate worst case inter-story inflection point). The columns are modeled using vertical
beam elements.

1’-0” x 2’-0” Timber 2’-0” x 2'-0” Timber
Column—1 ea. End Column — 4 Typ.

Column to Column Bay - 5 Typ.

6” Concrete CLT Floor  CLT Lap Splice 1’-0” Timber 6-0 Wall
Beam Elements Elements  Elements Wall Opening -3 Typ.
@) (b)

Figure 4-1: Analytical Model (a) Isotropic (b) Plan

Boundary Conditions

The base of the columns and the walls are pinned (x, y and z translation = 0) and the tip of the
columns and the walls are restrained for translation in x and y.

To model the floor as infinitely long in the direction perpendicular to the span, the following
boundary conditions are applied to the floor elements: translation x = 0 and rotation about y and
z=0.
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The analysis model has two types of slab edge conditions corresponding to the composite
behavior of the floor for both construction and in-service conditions. During construction, the
grouted connections will serve as additional dead load, but will not contribute to floor stiffness. As
a result, the slab is pinned (no moment connection) along the entire length.

Once the grout strip cures, the composite behavior will have moment connection at each edge.
However, since the spandrel beam splice may not be able to transfer torsion, the joints are
pinned for x > By..m (2’-0") of each side of the exterior columns as shown in Fig. 4-2.

Slab Connections Pinned
~ X>Byeq (2-0”) Away From Columns

Slab Connections Fixed — Typ. U.N.O.

EE T ma BE i . EE EE BE e EH
o1 BE - B 1+ 1 N an 1 1]

Figure 4-2: Floor Boundary Conditions for Typical Service Condition

4.2 Analysis Software

The computer model of the gravity system was developed using the finite element analysis
program SAP2000 16.0.2, Computers and Structures Inc.

4.3 Analysis Inputs
Material and Sections

The sections and materials used in the finite element model are provided in Tables 4-1 through
4-3. According to AWC-NDS2012, the mass-timber values modeled can be achieved with species
that include, but are not limited to, Alaska Spruce, Douglas Fir-Larch, Douglas Fir-South, Hem-Fir,
and Spruce-Pine-Fir [8].

Concrete values are for 4ksi and 5ksi normal weight concrete. The material modifiers for concrete
were calculated according to ACI [2].
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Material Name CONC-4KSI | CONC-5KSI | TIMB-1
Weight per Volume, p 150pcf 150pcf 30pcf
Modulus of Elasticity, E 3,650ksi 4,070ksi 1,400ksi
Poisson’s Ratio, U 0.2 0.2 0.44
Compressive Strength, f'c / Fc 4,000psi 5,000 psi 1,150 psi
Applicable Elements "Shbe. | anadonts | Elements

Table 4-1: Material Properties Used in Analytical Model

The timber columns have property modifiers applied in the region of the floor to account for
additional panel zone stiffness. The stiffness for these elements is increased in all directions as
shown in Table 4-2 to account for nearly rigid panel zones. The grouted connection at the column
and wall ends of the floor span has property modifiers applied for cracking.

Section Name TIMB-24x12 TIMB-24x12-RGD TIMB-24x24 TIMB-24x24-RGD CONNECTION
Depth, t3 24in 24in 24in 24in 12in
Width, t2 12in 12in 24in 24in 6in
Material TIMB TIMB TIMB TIMB CONC-5KSI
Modifiers:
Shear Area 2-Dir 1 10 1 10 0.50
Shear Area 3-Dir 1 10 1 10 0.50
Torsional Const 1 10 1 10 0.10
MOI 2-Axis 1 10 1 10 0.50
MOI 3-Axis 1 10 1 10 0.11
Mass 1 1 1 1 1
Weight 1 1 1 1 1

Table 4-2: Beam Sections Used In Analytical Model

Horizontal shell elements have property modifiers applied. The local axes for all horizontal shell
elements are aligned to global axes (i.e, x = X,y =Y and z = Z). The axes are defined by SAP as
follows: X=1, Y=2 and Z=3.

The property modifiers were calculated assuming plane sections remain plane (parallel axis
theorem applies), transformed sections based on modular ratios, and that concrete has no
stiffness above ACI calculated rupture stress. Additional reductions in stiffness for the mass-
timber elements were considered according to the US CLT Manual [3].
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Section Name CONC- | PLANK- | PLANK- | SPANDREL- | SPLICE | SPLICE | TIMB- 11-'2“:'3_'
JOINT CRCK UNCR UNCR -CRCK | -UNCR 12IN RGD
Membrane Thick 12in 9in 9in 12in 9in 9in 12in 12in
Bending Thick 12in 9in 9in 12in 9in 9in 12in 12in
Material Name o | ™™s [ mmB | concsksi | Tme | TiMB | TiMB [ TiMB
Modifiers:
Membrane 11 1 0.51 1.05 1 0.51 1.05 0.66 1
Membrane f22 1 0.51 1.05 1 0.51 1.05 0.66 1
Membrane 12 1 0.51 1.05 1 0.51 1.05 0.66 1
Bending m11 10 0.11 0.67 1 0.11 0.1 0.66 10
Bending m22 10 0.48 1.23 1 0.48 1.23 0.66 10
Bending m12 10 0.48 1.23 1 0.48 1.23 0.66 10
Shear v13 1 0.50 1 0.50 0.50 1 0.66 1
Shear v23 1 0.50 1 0.50 0.50 1 0.66 1
Mass 1 1.89 1.89 1 1.89 1.89 1 1
Weight 1 1.89 1.89 1 1.89 1.89 1 1

Table 4-3: Shell Sections Used in Analytical Model

The typical locations for application of the structural property modifiers in Tables 4-2 and 4-3 are shown in Figure
4-3.

CONC-JOINT

SPLICE-CRCK CONC-5KSI

HHHH

A AERRARBARRENANARERANE
HHHH
EEEEREIEIIEIIEIIEEEEIT

s

i

IRRERRRRARANINARAN
-:-i-m---::::::':

PLANK-UNCR SPLICE-UNCR CONC-5KSI

Figure 4-3: Typical Locations for Application of Section Modifiers
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Loads

Gravity loading was applied according to ASCE 7-10. Factored combinations are also taken from
ASCE 7-10.

Case Load COMBINATION | DEAD SDL CLAD LL
DEAD Self Wt G01 1.4* 1.4 1.4 0.0
SDL 30psf G02 1.2* 1.2 1.2 1.6
CLAD 184plf S01 1.0* 1.0 1.0 1.0
LL 40psf S02 - 1.0 1.0 1.0
Ap 1000lb S03 1.0 0.85 0.85 0.15
* Results for DEAD taken from construction model
(@ (b)

Table 4-4: Load Information (a) Cases (b) Combinations
Load Patterns

Multiple live load patterns on a single floor were investigated as shown in Fig 4-4. The patterning
of live loads on a single floor did not govern the design over a uniformly distributed live load on
the entire floor. Results shown in this report are for live loads that were uniformly distributed over
the entire floor analyzed. Live load patterning effects from load on floors above and below was
considered in the assumed inflection point of the columns. Note that the floor to floor live load
patterning has less than a 1% effect on the overall results presented.

(€] (b) (©
Figure 4-4: Live Load Patterns Considered
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4.4 Combination of Results

This system is designed so that construction can be unshored. The anticipated construction
sequence is expected to cause additional dead load deflections and mid-span bending stresses
as shown in Figure 2-13. Two analysis models were created to capture this expected behavior.
The ‘construction model’ is used to determine shear forces, bending moments, and
instantaneous deflections due to the self-weight of the structure. The ‘service model’ is used to
determine shear forces, bending moments, and instantaneous deflections for the imposed loads.
The service model is also used to compute long term deflections and evaluate vibrations. The
combination of results is shown below with the subscript ‘CONST’ for construction model and
‘SERV’ for the service model.

e Shear Demands: DEADconst + SDLggry + CLADggry + LLggry
¢ Moment Demands: DEAD¢onst + SDLggry + CLADggry + LLsgry
e Instantaneous Deflection: DEADconst + SDLggry + CLADggry + LLgery
e Sustained Deflection: DEADggry + SDLggry + CLADggry + LLgery
e Long Term Deflection: Long Term Multiplier * Sustained Deflection
e Total Deflection: Instantaneous Deflection + Long Term Deflection
e Vibrations: Service Model
Timber Tower System Report #1 pg. 28 © Skidmore, Owings & Merrill, LLP 2014
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Section 5: Analysis Results

5.1 Data Output Conventions

Results for the floor are obtained for the load cases and combinations described in Sec. 4 at the
section cut locations shown in Fig 5-1.

Results for the concrete spandrel are taken from (green) integration lines every 1’-0” o.c. column-
to-column starting at the face of the column. The results for the timber floor are obtained for
longitudinal (red) integration lines spaced at 2’-0” along the floor in the primary span direction.
Results are obtained for the planks that are centered on the column grid (i.e., “gridline plank”)
and for those planks centered between columns (i.e., “mid-span plank”). Results for secondary
span direction are obtained from sets of (blue) integration lines that run parallel to the span.

Concrete Spandrel
Transverse Section Cut
(1’-0” o.c. Typ.)

Composite Timber Floor
Longitudinal Section Cuts
(2’-0” o.c. Typ.)

Timber Floor Transverse
Section Cuts (4’-0” o.c.

Typ.)

Figure 5-1: Section Cuts for Output Data

5.2 Reactions

Global reactions for the system are shown in Table 5-1.
Note that the CLAD load is supported by the exterior (i.e., along column line).

Case Reactions [kip]

Column Wall

DEAD 79.0 87.1

SDL 34.9 36.6
CLAD 14.8 0.0
LL 46.5 48.8

Table 5-1: Total Column and Wall Reactions for Each Load Case
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5.3 Modal Results
The modal results for the system are shown in Fig. 5-2 and listed in Table 5-2.

(b)

Figure 5-2: (a) Fundamental Mode Shape, f = 7.32Hz (b) Plan View of First Three Modes
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Type Number | Period | Frequency
sec cyc/sec
Mode 1 0.137 7.32
Mode 2 0.132 7.60
Mode 3 0.118 8.45
Mode 4 0.101 9.91
Mode 5 0.084 11.90
Mode 6 0.067 15.02
Mode 7 0.056 17.75
Mode 8 0.047 21.37
Mode 9 0.046 21.97
Mode 10 0.045 22.25
Mode 11 0.043 23.05
Mode 12 0.040 24.91

Table 5-2: Modal Results for the First 12 Modes of the Floor System

5.4 Deformations

Contours and maximum values for displacement are provided for load cases for the simply
supported construction case and the moment connected service case in Figs 5-3 through 5-8.

Construction Case

LN
[ =]
= 2

Figure 5-3: Deflection Contour for DEAD (Used for Instantaneous Deflection)
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Service Case

U,,max = 0.136in

Figure 5-4: Deflection Contour for DEAD (Used for Long Term Deflection)

U,,max = 0.0029in

AR AR RE PR AR HP R
Figure 5-6: Deflection Contour for CLAD
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= 0.125in

U,.max

Figure 5-7: Deflection Contour for LL

=0.0101in

U,,max

Figure 5-8: Deflection Contour for Ap (1kip floor flexibility load)

Figures 5-9 and 5-10 show the deflection plots for the mid-span plank under various load cases

and combinations. Note that the dead load displacement is obtained from the construction case

(i.e., simply supported) and is used as the dead load in the load combinations.
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Figure 5-10: Deflection Plot for Timber Floor Along Span for Load Combinations
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5.5 Shear Demands

Shear demands are shown in Figs 5-11 through 5-13 for the construction and service cases.

Construction Case

B e e e e e e e e T T ]

B e e e e e e e T T ]

Figure 5-11: Shear V23 Contour for DEAD [k/in]

Service Case
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-34.6
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I

B
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Figure 5-12: Shear V23 Contour for SDL [k/in]
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Figure 5-13: Shear V23 Contour for LL [k/in]

Figures 5-14 and 5-15 show the shear in the floor along the grid line plank. Figures 5-16 and 5-17 show the shear
in the floor along the mid-span plank and Figures 5-18 and 5-19 show shear in the spandrel beam. For all figures,
the dead load shear for combinations is obtained from the construction case. For all floor plots, x=0 is the wall
side of the floor and x=312 is the column side of the floor.
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Figure 5-15: Shear F3 Plots for Floor Along Grid Line Plank for Load Combinations
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Figure 5-17: Shear F3 Plots for Floor Along Mid-Span Plank for Load Combinations
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5.6 Moment Demands

Contours and maximum values for moment are provided for load cases for the simply supported
construction case and the moment connected service case in Figs 5-20 through 5-23. Figures 5-
24 through 5-29 show the moments in the column strip, middle strip and in the spandrel. For all
figures, the dead load moment for combinations is obtained from the construction model. For all
floor plots, x=0 is the wall side of the floor and x=312 is the column side of the floor.

Construction Case

Figure 5-20: DEAD M22 Moment Contour for Construction Condition [k-in/in]

Service Case

Figure 5-21: DEAD M22 Moment Contour for Service Condition [k-in/in]
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Figure 5-23: LL M22 Moment Contour for Service Condition [k-in/in]
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5.7 Torsion and Connection Demands

The demand for the concrete spandrel is shown in Tables 5-3 and 5-4. The torsion is recorded at
at one beam width, B,.., = 2’-0”, away from the face of the column. Torsion moments within
Boeam from the column face can be resolved with horizontal compression struts, similar to vertical
shear within the one beam depth from the face of a support. Torsional moments within this
dimension are not expected to govern the strength of the element and will need to be verified by

physical testing.

Case/ Torsion
Combo [kip-in]
DEAD 52.9
SDL 30.8
CLAD -12.4
LL 411
S01 112.5
S02 59.6
S03 74.9
Go1 157.5
G02 151.4

Table 5-3: Torsion Demand in Spandrel at B,,,, From Face of Column

Case/ Shear Moment
Combo [kip] [kip-in]
S01 -8.3 -70.5
S02 -3.8 -31.5
S03 -6.60 -56.3
G01 -11.7 -98.6
G02 -10.7 -89.9

Table 5-4: Shear and Moment Demand for Spandrel Splice
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Section 6: Design Checks

6.1 Deflection Evaluation

The floor system deflections are evaluated from center to center of supports which is a length of
28'-6” = 342" inches. The following maximum deflections for the floor system were determined:

Individual Load Cases:

DEADgonsr = 0.292”
DEADgry = 0.136”
SDlgzy = 0.095”
L Lseny = 0.125” (L/2,570 < L/360 criteria, 14% of limit)

Combined Deflections:

e Total Instantaneous =0.515"
e Sustained Loads =0.236"
e Long Term =0472"

Total + Long Term = 0.987"” (L/350 < L/240 criteria, 69% of limit)

The results of the analysis shows that the system satisfies both the live load and total
instantaneous plus long term deflection criteria. The analysis performed assumes that no slip
occurs between the mass-timber floors and topping slabs, no slip between the composite floors
and concrete joints, and no slip between the concrete joints and vertical members providing
rotational restraint. Rolling shear in the floors has also been assumed to be negligible due to
detailing of the floor and large span to depth ratio of the system. Movement at any of these
locations will increase deflections. Physical testing is necessary to determine sources of deflection
not considered in this analysis. The results of the physical testing program will be used to
calibrate analysis models for more precise predictions of system deflections. Should the actual
deflections be larger than reflected in the analysis, camber can be considered to compensate for
dead load and superimposed dead loads.
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6.2 Vibration Evaluation
Evaluation of AISC DG11 Chapter 4: Design for Walking Excitation [4, 7]

a,/g = Poe(-0.35f,)/pW

P, = 65lb

f,=7.32Hz

B =0.05

W = wBL = (74psf)(24.51)(28.5ft) = 51,670Ibs

w = expected load = 42.5psf (DEAD) + 25.5psf (SDL) + 6.0psf (LL) = 74psf

L =28-6"

B = Cj(Ds/Dj)"*Lj = 2.0(0.55)"4(28’-6") = 24.5ft

a,/g = (65Ib)e(-0.35*7.32Hz)/(0.05*51,670Ibs) = 0.00192 < 0.005 (38% of limit)

Evaluation of AISC DG11 Chapter 6: Design for Sensitive Equipment [4, 7]

This approach estimates walking induced vibration velocity which is commonly used to
evaluate the serviceability of sensitive equipment. This method can also be used to
evaluate occupant comfort given the appropriate velocity thresholds [7].

vV =U,D,/f,

Uy = 5,500 Ib-Hz?

D, = 1.01e-5 inches/Ib

f, =732 Hz

V = U,D,/f, = (5,500Ib-Hz?)(1.01e-5in/Ib)/(7.32Hz)

= 7,590uin/sec < 8,000uin/sec (95% of limit)

The system satisfies both vibration criteria considered. It can be seen that the vibration design of
the system controls with the given criteria, which may be too stringent as a slow walking pace
could be considered. Physical testing of an entire bay will be necessary to confirm the dynamic
behavior of this system.
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6.3 Strength Checks

Floor Positive Bending: Reference Figure 2-10b

The floor strength is checked by assuming plane sections remain plane and limiting the stresses
within a ply to NDS [8] permissible values. The choice of the NDS values over ANSI/APA PRG320
was made as this design is a ‘first principles’ approach for composite concrete CLT floor planks
which does not have a standard in the United States. Concrete stresses are limited to values per
ACI-318 [2].

%o
3|2
4L
. 000048 -1,804ks|
Y ) N Y T 2434k
T ) H\“ 0,127k |
) " T#*”’“ET#' “=~T#” i \ b cezx
<[>~
4 4 | Y |0 484k
+0,00085 +1 334k
2 ;“? STRAIN PROFILE STRESS PROFILE FORCE FROFILE
=
2
Category  |Value Unit Motes
Curvature = |0.000161 |/in
M. Axis = |5923 in
Met Axial = |-0.001 kip (OK)
Mn = 16.253 kip-in/in
$Mn = 13.815 kip-infin |4 = 0.85 per NDS
Mu = 7350 kip-infin
Ltilization =|0.532 (OK)
Layer ID [Material |B Th A Ybar Ec Strain | Stress  |Force  |Moment
[in] [in] il |[in] [ksi] [ksi]  |[kip] |[kip-in]
7 Concrete (1 2.000 |2.00 8.00 3,644 |-0.00033|1.217 |-2.434 |5.06
B Wood 1 1260 [1.25 6.38 1400 [-0.00007|-0.102 (-0127 |0.06
5 Wood 1 1.375 |1.38 5.06 0 0.00014 [0.000 (0.000 |0.00
4 Wood 1 1.375  [1.38 3.69 1,400 [0.00036 |0.503 ([0.692 |1.55
3 Wood 1 1.375 |1.38 2.3 0 0.00055 [0.000 (0.000 |0.00
2 Wood 1 1260 [1.25 1.00 1,400 [0.00079 {1108 ([1.385 |6.82
1 Wood 1 0.375 |0.38 0.19 1,400 000092 (1291 |0.484 |278

Notes:

1. Strength governed by 1.4D load combination due to 0.6 duration factor per NDS

2. Nominal bending stress in 1/2 SPF per NDS = 0.6%¥2.54*0.875ksi = 1.334ksi (at limit)
3. Concrete stress is below ACI limits for compression members = 0.8*.85f'c = 2.720ksi

Figure 6-1: Composite Floor Positive Bending Strength
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Floor Negative Bending: Reference Figure 2-10d

The floor strength is checked by assuming plane sections remain plane and limiting the stresses
within a ply to NDS [8] permissible values. Reinforcing stresses are limited to values specified by
ACI-318 [2]. Plies in tension are not considered as they may not be developed at the critical
section, only the steel reinforcement is considered for tension strength.

E% #4s @ 8' 0.C,
al= —_—
.
=g
™ +0, 0046 +50,000ks]
. / 1,500
O l.,l -i' —
— / /
e — - = - 'Il. llll
. < ]“HEL <1 f_.f _r'f
- = "II = "ll
I rr’ e l"l ETI "ll
= ]i.—*'hﬂfh]— - _— S - /
— 008k
i / 0.557K]
£0,0013 -1, 778kl
z g STRAIN FROFILE STRESS PROFILE FORGE PROFILE
Category  |Value Unit Motes
Curvature = |0.000747 |/in
M. Axis = |1.6895 in
Met Axial = |0.000 kip (OK)
Mn = 10793 kip-in/in
plin = 9.390 kip-in/in |4 = 0.87 per ACI
Mu = 7.580 kip-in/in
Ltilization =|0.807 (OK)
LayerID [Material (B Th A Y bar Ec Strain  |Stress |Force  [Moment
[in] [in] [in?] [in] [ksi] [ksi] [kip] [kip-in]
7 Steel YA, MIA, 0.03 7.88 29,000 |0.00462 |60.000 |1.500 |9.27
B Wood 1 1260 [1.25 6.38 0 0.00350 [0.000 (0.000 |0.00
5 Wood 1 1375 |1.38 5.06 0 0.00252 [0.000 [0.000 |0.00
4 Wood 1 1376 [1.38 3.69 0 0.00149 [0.000 [0.000 |0.00
3 Wood 1 1375 |1.38 2.3 0 0.00046 {0.000 (0.000 |0.00
2 Wood 1 1260 [1.25 1.00 1400 [-0.00052|-0.727 (-0.909 |0.63
1 Wood 1 0.375 |0.38 0.19 1,400 |-0.00113|-1.577 |-0.591 |0.89
Notes:

1. Strength governed by 1.2D+1.6L since reinforcing controls, $=0.87 due to strain < 0.005.

2. Nominal bending stress in 1/2 SPF per NDS = 0.8%2.54*0.875ksi = 1.778ksi (at limit)

Figure 6-2: Composite Floor Negative Bending Strength
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Composite Floor Horizontal Shear Demand: Reference Figure 2-10b

The horizontal shear demand is governed by 1.2D+1.6L [1]. This horizontal shear demand is
reported for consideration in selecting a composite shear connector system to connect the CLT
planks and concrete topping slab. The strength of the CLT element is checked to show that the
overall system can resist the horizontal shear demand.

Horzontal Shear Demarnd

ltem Value Units Motes
Vu = 0.29 kipfin from analysis
= 1.43 in*/in parallel plies only, lowest perpendicular ply
= 292 in*/in parallel plies only
Vol = 14.2 psi horizontal shear demand
CLT Plank Check
#W/n,rolling = |77.80 psi CLTHB, = 0.75*0.8*2 884 5psi
Utilization  |0.18 ok

Figure 6-3: Composite Floor Horizontal Shear Design
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Floor Negative Bending Moment Connection: Reference Figure 2-10d

Only the compression force of the moment couple needs to be checked for this connection as the
tension reinforcement is shown to be satisfactory in the negative bending check. The moment
connection is controlled by 1.2D+1.6L combination [1]. The connection is checked for two load
transfers, compression in the mass-timber to a steel plate via shear in the mass-timber and
compression in the steel plate to concrete joint via masonry screw shear and projected area
bearing on the grouted strip.

Shear Transfer to Plate

ltem Value Units Motes

Mu = 7.58 kip-infin _ |from analysis

d= 7875 in

Wu = 0.963 kips/in

Lplate = 6.000 in

fvn, wood = [233 psi NDS, = 0.75%0.8"2.86™135psi
#\n, conn = [1.400 kips/in

Utilization = |0.69 oK

Anchor Design of Compression Force

ltem Value Units Motes
Mu = 7.58 kip-in/in  |from analysis
Sanchor = |4 in
Mu/anchor =|30.32 kip-in
d= 5.00 in
Vufanchor = |3.79 kips
pW/n/anchor ={1.80 kips 0.75%2 4kips (1/4" Hilti KA\WIK-CON 11}
Abear = 1.15 in Abear = 2x bolt head and plate area
pRn bear = |3.18 kips ACI, = 0.65"0.85%c
pFn total = |4.982 kips Screw shear plus bearing
Utilization = |0.76 oK
Notes:

1. Masonry screws can support the expected loading including vibration demands. Slip may occur and
grout engaged in bearing at full service loads or ultimate loads.

2. Substitute 3/8” diameter KWIK-HUS EZ connectors for wider spacing or 100% load transfer
through the steel shear connectors.

Figure 6-4: Floor Negative Bending Moment Connection
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Concrete Ledge Strength Check: Reference Figure 2-10c

The concrete ledge is checked for the dead plus construction live load condition. The imposed
loads are transferred through a diagonal compression strut through the grouted strip connection.

Wood Bearing on Ledge, Construction Case

ltem Value Units MNotes

Vu = 15 kip/ft 1.20+1.6LLconst(20psf)
$FCpep = |0.403 ksi MNDS, = 0.90%0.8"1.67"335psi
Abrg = 24 in®fft (2" bearing design based on allowed tolerance)
pRn = 9.672 kips/ft

Util Brg = |0.16 OK

Concrete Ledge Shear and Bending, Construction Case

ltem Value Units MNotes

Wu = 1.5 kip/ft 1.20+1.6LLconst(20psf)
ddba= |[2.00 in

P = 255 kips/ft

UtV = |0.59 OK

Mu = 11.25 kip-infft |7 moment arm to beam stirrup
As = 0.2 in”

AsFy = |12 kips

a= 0.24 in ACI, compression block depth
#in = 20.33 kip-nft  [ACl 4=0.9

UtilLM = |0.55

Inclined Shear at Column End of Column Sirip, Imposed Load, Ref Figure 2-9

ltem Value Units MNotes

Wu = 3.6 kip/ft From analysis, ultimate imposed diagonal shear
Abear= |3.72 in Abear = 2% bolt head, 3 bolts per plate

$Rn, bear =10.28 kips ACI, = 0.65"0.85%¢

Smax= |34.3 in = typical spacing, OK

Figure 6-5: Concrete Ledge & Shear Connection Strength Check
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Concrete Spandrel Strength Check: Reference Figure 2-11

The concrete spandrel is checked with S-Concrete Version 11.00 by S-Frame Software:

-
S-COMNCRETE Version 11.00 - [MMADMINAL~ 100041~ 1.02C4 201401 ~ 1\DESIGNSATYPICA ~1.5C0]

= | B - |

File

Edit View Run

Dgd@ R alala alsal 7lolsl2 A o @28 &

Results

Settings  Help

Ble|E

Beam

| Rectangular Beam

Project Mame: |CJTF-Gpandrel

Job # |21 2023 W Wisual Editor

Material Properties.

T

Calumn

fc' = 5000 psi

fy (main} = 60.0 ksi
fy (stir) = 60.0 ksi
We =150 pcf

Ws =500 pcf
Poisson’s Ratie = 0.2
hagg=075in

Es = 29000 ksi

Ec = 4287 ksi

Gc = 1786 ksi

all

]
C
T
L

#B@40in

Top Bars

[

Bottom Bars.

455

255

Face Steel[>]

Section Properties

Zbar =5.0in

Yhar = 0.0in
Ag=288.0 =q.in.

lg (y-y) = 3455.0 ind
Iy (z-z) = 13824 ind

Ashear (v) = 240.0 =q.in.
Ashear (Z) = 240.0 =q.in.

Jg=15484.0 in4

Ae =28380 sq.in.

le (y-y) = 3455.0 ind
le (z-z) = 13824 ind
Ase ()= 240.0 sq.in.
Ase (£) = 240.0 sq.in.
Je = 5454.0 ind

Summary
CJTF-Spandrel
Job # 213023
ACI 318-08 Standard

Skidmore, Owings & Merrill LLP
Structural Group

Miscellaneous

Quantities (Approx.}
Concrete = 297 Io/ft
Steel = 16.8 I/'ft

Top Barz
d'=1688in
Ag'=124 =q.in.
Ag'bh = 0.00431
dz == N/A*=

Bottom Bars
d=10313in
As =124 =q.n.
As/bh = 0.00431
dz = = N/A =

Face Steel
As =062 =q.in.

Clear Cover
Top=1.0in
Bottom=1.0in
Side=1.01n

Flexural / Axial Results

Shear / Torsion Results

WVuz =19.7 kips
Tu =132 k*it

AvziS = 0.000 in
AS = 0.00985 in
5 (req'd) = 4.8 in

MNu = 0.0 kips
Mu(-} = -35.8 k*ft
@Mni-) = -70.2 k*ft

Ag' (Reg'd) = 1.17 =q.in.
Nu = 0.0 kips

Mu(+) = 15.8 k*ft
BMni+) = 70.2 k*ft

As (Regd) = 0.37 sq.in.

Figure 6-6: Spandrel Strength Check
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Concrete Spandrel Splice Check: Reference Figure 2-11

The concrete spandrel splice is designed to transfer the required shear forces and to develop the
required strength of the beam at the support.

Design Via ACI Strut and Tie Method

ltem Value Units Motes

Vu = 1.7 kips from analysis

Vu Incl = 19.82 kips 1.689x due one strut at angle
Astrut = 10.50 int2 4 struts, one per bar
Wulbstrut = [1.89 ksi

$Pc = 2.25 ksi ACI =0.75*0.6%1.0"5ksi

Util = 0.84 Ok

Design Welds for Bending, Develop Bars

ltem Value Units Motes

$ln, #5 = 16.74 kips tension capacity of bar

D, eff = 0.125 in =4{Radius of Bar)

Lweld eff= |7 in = 2sides{Lw-2Dw)

pRnweld = [27 56 kips AISC, =0.75" 6*70ksi"Lw*Dw
Ltil = 0.61 Ok

Design Bolts for Bending, Develop Acltual Moment W./Slip Crtical Bolts

ltem Value Units Motes

dbolt = 0.625 A490 bolts

Preten/bolt = |24 kips

Pretension = |48 kips 2 bolts / bar

pRn = 16.14 kips AISC, =1.0070.35"1.13"0.85

Ru = 13.32 kips Mu / (dist between bolts X # of bars)
Ltil = 0.83 Ok

Figure 6-7: Spandrel Splice Strength Check
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Wall Bending Strength Check: Reference Figure 2-12a

The wall capacity is checked against the floor negative bending capacity. The strength is based on
the strength of the steel reinforcing dowels only. A resistance factor of 0.90 is assumed.

Design for Floor Negative Bending Capacity

ltem Value Units MNotes

Mu = 9.4 kip-in/in  [floor negative bending capacity

dbars = [8.5 in CL to CL of vertical bars

AskFy = |12 kips

Shars = [16 in bar spacing along wall

phn = 5.74 kip-infin  [= 0.90AsFySbars, capcity reacting upward or downward
Ltil = 0.82 = Mu/(Z*Mn), OK

Figure 6-8: Wall Bending Strength Check

Column Bending Strength Check: Reference Figure 2-12a

The column capacity is checked against the analysis results. The strength is based on the
strength of the steel reinforcing dowels only. A resistance factor of 0.90 is assumed.

Design for Actual Demand from Mode!

ltem Value Units Motes

Mu = 500 kip-in from analysis

dbars = 19.5 in CL-CL of extreme row of bars only
nbars = b

Ab = 0.2 in”

AsFy = 60 kips

phn = 1053 kip-in = 0.90AsFydbars, capcity reacting upward or downward
Ltil, bars = [0.24 = Mu/{2%Mn), DK

Col Stress = [0.217 ksi Mu/S Stress

$Fb = 1.778 ksi NDS, =0.8"2.54"0.875ksi

Ltil, col = 0.12

Figure 6-9: Column Bending Strength Check
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Section 7: Conclusions

The system as shown appears to be able to satisfy the intent of the code with reasonable element
sizes and connection details. Additional research related to the fire resistance of the system and
physical testing will be required to confirm these findings.

7.1 Review of Studies

The gravity framing components of the concrete jointed timber frame system were analyzed and
designed for typical high-rise apartment geometry. These components included mass-timber
floor planks with composite concrete toppings, reinforced concrete joints and spandrel beams,
and mass-timber shear walls and columns. The geometry considered was a 29’-0” lease span
and 8-6" floor to ceiling height with mass-timber shear walls along one edge of the floor and
mass-timber columns at 16’-0” on center at the other end of the floor. The system was analyzed
and evaluated for deflections, vibrations, and strength of the components.

7.2 Review of System Performance

The analysis documented in this report suggests that the concrete jointed timber frame system is
a relatively stiff and strong floor framing system which may be prone to vibrations due to walking
excitation. The stiffness of the system to satisfy deflections will be governed by total immediate
plus long-term deflections. The system as documented is predicted to deflect to approximately
70% of that deflection limit. The strength of the system is expected to be satisfactory based on
the calculated demands and provided strength calculations. The system is expected to be near
the selected vibration criteria which may be too stringent for residential occupancies. Less
stringent vibration criteria might allow for more economical member designs. These predictions
must be verified by physical testing as recommended below.

7.3 Verification of Assumptions

The following assumptions have been made in the design of the system as shown. Each of these
assumptions must be verified by physical testing. Potential tests which could confirm these
assumptions are shown in Appendix 2.

e The shear strength of the wood was assumed to be less than the shear strength of the
epoxy connections.

e Moisture changes in the mass-timber and shrinkage in the concrete were assumed to
have a negligible impact on system strength. Additional deflections were assumed to be
captured in the assumed 2.0 long term deflection multiplier.

¢ No slip was assumed between the mass-timber and concrete topping.

e Additional deformations due to rolling shear deformations in the secondary plies were
assumed to be negligible due to the detailing and geometry of the system.

e Losses in floor stiffness due to the lap splice of top reinforcing bars at the ends of floor
planks were assumed to be negligible.

e The connection grout must be non-shrink or use shrinkage compensating admixtures.

e No slip was assumed at the interface of the concrete joints and vertical timber elements.

e Fire resistance was considered from a conceptual perspective only. Fire resistance of the
details shown must be evaluated by a fire engineer and verified by physical testing.
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Appendix 1: Contractor Review Summary

Al.1: Contractor Review Summary

The following design considerations were highlighted in a review of the original system by
contractors knowledgeable with high-rise construction:

The system should use ‘column trees’ to minimize pick counts. The precast beam splices
shown have been designed to achieve this.

Field assembly of precast beam and timber column trees adds cost. Beams and columns
within the tree should be connected off site. Column joint shown in Figure 2-7 indicates a
shop connection. Columns would be spliced approximately 4’-0” above the floor, similar to
columns in a structural steel building.

The acoustic concrete topping adds cost. Make this topping structural and composite to
offset the cost of the topping with timber plank thickness savings.

The ceiling finishes add significant cost. The system as shown uses a thin visual grade
which is structural and exposed, offsetting this cost.

Routing of electrical conduit within the floor thickness is not as simple as a cast-in-place
concrete slab. The revised system could route conduit within the top ply of the mass-
timber floor and partially within the concrete topping without compromising the structural
performance.

Fireproofing of connections if required will add cost and needs to be considered.

The floor-to-floor height had to be taller for the original system. The composite topping
and exposed visual grade approach reduces the ceiling sandwich dimension. This will
reduce costs due to floor-to-floor height differences.

The composite-timber system will save on foundations due to less total gravity load. The
system as shown in this report is approximately 5% lighter due to weight savings in the
concrete joints.
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Appendix 2: Potential Testing Program

The analysis and design of the system as documented required a number of assumptions which
are documented in Section 7.3. A physical testing program will be required to verify these
assumptions prior to implementation of the system in the market. Structural researchers
experienced in mass-timber will need to determine the necessary testing programs to verify the
assumptions and behavior of the proposed system. The structural researcher should consider the
tests discussed below. Detailed finite element analysis of the structural details selected for testing
should be included as part of the testing program. The details shown in Section 2.3 and Appendix
3 should be considered for testing by the structural researcher.

A2.1: Floor Composite Action Test

The composite behavior of the mass timber plank and precast concrete topping slab must be
verified. A full scale load test of the composite timber floor planks is recommended to determine
the strength, stiffness, and long-term behavior. Two types of tests should be included: a simply
supported floor as shown in Figure A2-1 below and a span with fixed end supports in order to
verify composite action under negative bending. Multiple tests with different types of horizontal
shear connectors are recommended. Refer to Appendix 3 for additional shear connector details
which could be tested.

LOAD WITH SAND B0 LOMNG x -c- .'||:| x
OR WATER SERE T :‘s-ll LUS
X Tf:ﬁ-'*h:-
Hnnanmnmm

POTENTIAL TESTING SEGUENCE,

1, BUILD TEST SPECIMEMN ON SHORES, MEASURE INITIAL STRESS

STATE DUE TO SHRINKAGE

2, REMOVE SHORES, LDAD WITH SELF WEIGHT

3, MEASLURE TIMBER AND CONCRETE STRESSES ALOMNG LENGTH

DF FAMEL, STRESS IN SHEAR CONNECTORSE, DEFLECTED SHAFE.
4, LOAD WITH EXPECTED LOAD = 3295F

5, TAKE MEASUREMEMNTS

. MAINTAIN LOAD FOR 1 MONTH

7. TAKE MEASUREMENTS

]

]

. LOAD WITH FULL SERVICE LOAD =TOPSF
, TAKE MEASUREMENTS
10, LOAD WITH ULTIMATE LOAD = 108 PSF
11, TAKE MEASUREMENTS
12, LOAD TO FAILURE
13, TAKE MEASUREMENTS

Figure A2-1: Floor Composite Action Test
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A2.2: Floor Moment Connection Test

The moment connection of the composite floor plank to the reinforced concrete elements is
essential to the system behavior. A series of full scale load tests of this connection are
recommended to determine the strength and stiffness characteristics. Multiple tests with
variations in the connection details are recommended. Refer to Appendix 3 for additional details
which could be tested.
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Figure A2-2: Floor Moment Connection Test
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A2.3: Column Moment Connection Test

The moment connection of the reinforced concrete elements to the vertical timber elements must
be verified for strength and stiffness. The connection of the column has a higher load demand
compared to the wall and thus is recommended for a full scale load testing. The results of this
test could be extrapolated to design the similar wall moment connections or additional wall
testing similar to the column could be provided.
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COMNECTIONS

50"
1

Figure A2-3: Column Moment Connection Test

A2.4: Full Scale System Mockup

The total system constructability and behavior must be verified. A full scale mockup of a single
floor with a minimum of 3 typical bays (3x16ft=48ft by 30ft in plan) is recommended. The
construction of the mockup should validate the design tolerances of the details. The mockup is to
be tested for dynamic behavior, vibrations, acoustics, shrinkage/volume changes, and durability.
The mockup is to be loaded with expected gravity loads and monitored for long term deflection
behavior. After determination of long term behavior, the mockup is to be loaded to full service
and ultimate loads. Fire testing and moisture/durability testing of the mockup at load should also
be considered.

A2.5: Fire Resistance Testing

A fire engineer should review this report and determine the necessary fire testing program. Fire
and loading tests should be combined and performed by a single laboratory where practical.
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Appendix 3: Additional Connection Details

The connection details documented in the main body of the report show one potential way to
achieve the design behavior of the proposed CJTF system. The design behavior could be achieved
with other details as shown in the figures below. These additional details should be studied as
part of the physical testing program as recommended in Appendix 2.

Composite Plank Details
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Figure A3-1a: Composite Plank with Screw Connectors

Notes: This composite plank approach uses diagonally oriented screws to transfer
horizontal shear. The transverse reinforcing in the topping slab is placed on the mid-
span side of the screws and below the heads of the screws. This is done with the goal
to enhance the connection between the screws and the topping slab.
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Figure A3-1b: Composite Plank with Joist Hangers

Notes: This composite plank approach uses standard wood framing joist hangers and
common nails to transfer horizontal shear. The hangers are oriented with the toe toward
the support so that the horizontal shear forces act in the same direction as gravity in a

standard joist connection.
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Figure A3-1c: Composite Plank with Bent Light Gage Metal Strips

Notes: This composite plank approach uses a bent light gage metal similar to a
corrugated deck to transfer horizontal shear between the concrete topping slab and
structural screws connected to the CLT plank. The shear connectors also serve as chairs
for reinforcing in the topping slab. Reinforcing could also be welded to the bent gage
metal to enhance the connection in negative bending regions.
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Transverse Span Detail
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Figure A3-2: Transverse Span Plank to Plank Connection
Notes: This detail is a more robust plank to plank connection. This detail could be used
in situations where 2-way behavior of the system is required and plank splices cannot
be located near inflection points as was done in the study geometry.

Plank End Connection Details
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Figure A3-3a: Plank End Connection A

Notes: This detail achieves a flat soffit condition by pre-casting the composite plank and
spandrel beam together off-site. The end connection of the plank must transfer both shear
and moment to the spandrel element. The splice of the spandrel would follow detail A3-5.
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Figure A3-3c: Plank End Connection C
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Figure A3-3b: Plank End Connection B
Notes: This detail achieves a flat soffit condition similar to detail A3-3a but differs in
that shear at the end of the composite plank is transferred by bearing on a concealed
corbel. This approach relies less on epoxy and may be more fire resistant. The
compression component of end moment is transferred similar to the base detail.
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Notes: This detail follows the same logic as A3-3b without the use of any epoxy.
Compression transfer screws are provided to avoid stiffness losses due to shrinkage

in the CLT or precast spandrel beam.
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Composite Heavy Timber System Details
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Figure A3-4a: Composite Heavy Timber System - Primary Span
Notes: This floor system consists of 4” nominal width heavy timbers with a composite
concrete topping slab. This type of system might be possible since the topping slab

provides the in-plan dimensional stability that would otherwise be provided by the
cross-lamination of CLT. The topping could be either precast or cast-in-place.
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Figure A3-4b: Composite Heavy Timber System -Transverse Span

Notes: A nominal number of screws are provided in the transverse direction to force the
heavy timbers to deflect as a group and to provide robustness. The spacing of the
transverse screws along the length of the floor is expected to be 4ft.

Gravity Framing Development of CJTF System

pg. 65 © Skidmore, Owings & Merrill, LLP 2014

Final Report - May 30" 2014



GRID oF SHOF CONMECTED PRIMARY SPAN CAST-IN-PLACE

REINFORCING BENT PLATE SHEAR, DIRECTION JUONCRETE 5LAB
BARS Y TRANSFER STRIP /
\ /
\ \ /
A Y
'."I‘ III,I I,I'
i \ i
- %
1! 5
= o &)
L4
e
=+ 4
; &
=7 @
/ SCREW STRENGTHEMED
."l SHEAR KEY CONNECTION

(4) BHOP CONMECTED #3 DBA SHOP WELDED ..-'

COMPRESSION TRAMNSFER T PLATE, BEND BAR FORMWORK AND

SCREWS PER TIMBER OUT [N FIELD |F REQ'D SHORING AT RIC

FOR SHIFPING SLAB JOIMT

Figure A3-4c: Composite Heavy Timber System - End Connection

Notes: The end connection of the heavy timber system would utilize a concealed corbel
approach similar to Figure A3-3c. The corbel is inclined to avoid shear splitting of the
timber. The horizontal shear connector at this zone is to be designed to help resist
vertical dimensional changes which might cause splitting. Compression is transferred by
a developed deformed bar anchor, welded to a steel plate, and screwed to the heavy
timber. This connection is intended to transfer compression regardless of shrinkage that
might occur in either the timber or concrete. The deformed bar anchor could be
installed with a 90 degree bend and field bent straight to improve shipping. The
concrete slab and beam could be either precast or cast-in-place.
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Spandrel Beam Splice Detail
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Figure A3-5: Composite Heavy Timber System - End Connection

Notes: This spandrel beam splice is intended to be more economical than the base detail
shown in the main body of the report. The connection splices hooked bars through a small
grouted segment. The splice length is insufficient to develop the full capacities of the bars
and therefore the splice must be located near inflection points of the beams, as is done in

the study geometry shown in this report.
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Column Connection Details
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Figure A3-6a: Column Connection A
Notes: This column connection detail is paired with Figure A3-3a. The column splice must
occur above and below the floor lines if the spandrel beam is precast with the composite
floor planks. This detail achieves that requirement with epoxy connected column shoes.
Threaded inserts are provided in the spandrel beam to connect to the column rods which
may improve the shipping and handling of the floor plank / spandrel beam unit.
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Figure A3-6b: Column Connection B
Notes: This column connection detail is paired with Figure A3-3b but could also apply
to Figure A3-3a. This connection uses WT steel shapes as the column shoes instead of
fabricated steel shoes as it is thought to be more economical. The threaded rod
connections shown in this detail are embedded in the spandrel element.
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Figure A3-6b: Column Connection C

|

Notes: This column connection detail is paired with Figures A3-3c but could also apply to
both Figure A3-3a and A3-3b. This connection eliminates the use of epoxy by using steel
angles connected to the columns with through bolts. The threaded rods connecting the
column to the spandrel beam are post-grouted for ease of shipping and tolerance.
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