Skidmore, Owings & Merrill LLP (SOM) is one of the leading architecture, interior design, engineering, and urban planning firms in the world, with a 79-year reputation for design excellence and a portfolio that includes some of the most important architectural accomplishments of the 20th and 21st centuries.

Firm Profile

Since its inception, SOM has been a leader in the research and development of specialized technologies, new processes and innovative ideas, many of which have had a palpable and lasting impact on the design profession and the physical environment. The firm's longstanding leadership in design and building technology has been honored with more than 1,700 awards for quality, innovation, and management. The American Institute of Architects has recognized SOM twice with its highest honor, the Architecture Firm Award, in 1962 and again in 1996. The firm maintains offices in New York, Chicago, San Francisco, Los Angeles, Washington, D.C., London, Hong Kong, Shanghai, and Abu Dhabi.

Excellence in Airport Planning and Design

Airports are among the most significant public building types of the modern age. Gateways to nations and cities, airports play an important role in shaping the global image of their surrounding environment. They are also major economic centers and generators of wealth. As facilitators of trade and tourism, airports are key to economic development and to connecting people.

Memorable architecture for transportation infrastructure is the product of collaboration and innovation—two forces that, along with our drive for excellence, remain SOM's defining traditions. Through seven decades of global experience, SOM has led the evolution of aviation facilities. We are proud to have designed some of the world's most memorable airports in Asia, Europe, the Middle East and North America; gateways that have since become civic landmarks.
SOM specializes in large, prestigious and iconic international gateway terminals—terminals that are the principal airports of capital cities and major regions. We design terminals with the belief that they should express the prestige, hospitality and values of the city or country for which the airport terminal has become the prime international gateway.
SOM Airports constantly innovates in the functional, technical, and service areas of airport planning and design. The ultimate objectives are to improve operational efficiency, economic success, passenger experience, and civic image.

Daylighting

Daylighting is one of the most effective means of reducing energy costs. For Mumbai we have designed a series of multi-colored glass lenses illuminated by hidden skylights and set in GFRG panels. For Changi Terminal 3 we designed a system of operable baffles over skylights to regulate the amount of equatorial sunlight that reaches the terminal interior, reducing artificial lighting during the day to almost nothing.

Low-Cost Terminal Facilities

Low-cost terminal facilities have their place at modern gateway airports. SOM planned and designed a new 12-gate pier at Dublin Airport specifically for low-cost operations—omitting boarding bridges, planning ample wait and queue area at the gate, using simple cost-effective materials, and other measures.

Electronic Processing

Electronic processing has the potential to streamline many steps in the air travel process. But there are many airline-proprietary systems competing for space in the check-in hall. For Toronto’s New Terminal One, SOM worked with the airport authority and communications engineers to design a truly common-use check-in kiosk, greatly simplifying the passenger experience and lowering airline costs.
Left Column:
Daylighting: Changi International Airport – Terminal 3
Low-Cost Terminal Facilities: Dublin Airport
 – Pier D & Connector

Right Column:
Electronic Processing: Toronto Pearson International Airport
Chhatrapati Shivaji International Airport – Terminal 2
SUSTAINABLE DESIGN

Sustainable Practice

We implement sustainable design concepts in airport terminals throughout the world. Our approach to high performance design has resulted in environmentally sound projects, such as the LEED Gold-certified Terminal 2 at the Chhatrapati Shivaji International Airport in Mumbai.

Since its inception, SOM has been a leader in the research and development of specialized technologies, new processes and innovative ideas, many of which have had a palpable and lasting impact on the design profession and the physical environment.

SOM is an original and active member of the U.S. Green Building Council (USGBC) and has participated in the development of the Leadership in Energy and Environmental Design (LEED) Green Building Rating System.

Environmental Sensitivity

Through ever-evolving studies in advanced building control systems, climatically responsive layouts, waste reduction principles, and natural day lighting, SOM is committed to creating highly functional, comfortable and environmentally responsible airport designs.

We ‘tune’ our terminal buildings for the local climate conditions. SOM incorporates site-specific natural systems from daylight to fresh air, providing a superior environment for the occupants, as well as a better long-term contribution to the surrounding environment.

Integrated Technology

SOM’s sustainable technology is driven by our integrated approach to building design. Our diversified team of professional designers, architects, engineers and energy specialists are fully integrated throughout all phases of a project, assuring efficient coordination of services, as well as the best overall solutions to design challenges.

Our in-house specialized Performative Design StudioTM utilizes building simulation tools to integrate green technology and inform architectural design. Through Energy Modeling, Thermal Modeling, Fluid Dynamics and Lighting studies, our designs are rooted in the conservation of environmental, economic and human resources.

Economic Responsibility

We consider sustainable practices every step of the way. In planning our terminals, we consider the configuration and adjacency of airport components so that taxi times can be reduced, minimizing unnecessary fuel burn.

SOM’s most recent terminal buildings are designed for dramatically reduced energy consumption with a renewed focus on locally sourced materials, as well as efficient means of construction.

Our sustainable design process recognizes that building materials, and the energy required to extract or create them, are not infinite and must be carefully considered during all aspects of design and construction.
Left Column:
Changi International Airport – Terminal 3
King Abdul Aziz International Airport – Hajj Terminal

Right Column:
Chhatrapati Shivaji International Airport – Terminal 2
San Francisco International Airport – International Terminal
Changi International Airport – Terminal 3; Roof skylight mock-up
SOM’s digital design, sustainability and energy specialists leverage advanced parametric, simulation and analysis tools at key design stages to illuminate the impact of design decisions, which allows the project teams to optimize sustainability, performance, and constructability.

Building Information Modeling & Advanced Digital Design

As an industry leader in the implementation and advanced use of computational tools, SOM has integrated Building Information Modeling (BIM) as an inherent part of its creative design and project delivery processes. Continuing its rich 40-year legacy of computational design, SOM was one of the first firms to embrace modern BIM in early 2000 and continues to be a key participant in defining its role in the industry. Dramatically improving the efficiency of traditional design, documentation production, and design team collaboration efforts are all benefits that have been realized to date.

SOM’s project-based architects and engineers are fluent in a broad spectrum of tools, positioning teams to work creatively, intelligently, and efficiently. Among the teams, a group of specialists with advanced professional and computational knowledge can guide teams even further, including the possibility of extending commercially available software into highly strategic, advanced tools. Designers also draw from targeted collaboration with industry partners and research groups in universities.
Clockwise from top:
- JFK Airport BIM Model
- Illumination Level Analysis in ECOTECT
- Coordination of Conduit Banks
- 3D Building System Model in Revit
SOM received the 2010 American Institute of Architects’ (AIA) 25 Year Award for the Hajj Terminal at King Abdul Aziz International Airport.

The 25 Year Award recognizes architectural design of enduring significance and is conferred on a project that has stood the test of time for 25 to 35 years as an embodiment of architectural excellence. Projects must demonstrate excellence in function, in the distinguished execution of its original program, and in the creative aspects of its statement by today’s standards.

The award jury commented, “The architects created a highly sustainable project well ahead of the green movement...The terminal presents a sense of place, ecology, economy of means, and culture—not imposing on but learning from the local culture and environment.”

Completed in 1981, the Hajj Terminal in Jeddah, Saudi Arabia becomes a temporary city for Muslims who decamp from planes and await transportation to the holy cities of Mecca and Medina during the six weeks of the Islamic pilgrimage known as Hajj. SOM created a series of tent-like structures beneath which up to 80,000 pilgrims circulate.
NEW CIVIC LANDMARKS AND CULTURAL GATEWAYS
Ben Gurion International Airport
Location: Tel Aviv, Israel
Completion Year: 2002
Area: 65,000 m²

In response to a dramatic increase in travel to Israel, the Israel Airports Authority launched a program to expand Ben Gurion Airport, culminating in a new international terminal complex situated on a vacant site. SOM’s design of the landslide terminal building recognizes Ben Gurion’s status as Israel’s only international airport, creating a gateway that reflects the country’s cultural and architectural heritage. SOM served as Master Architect of the project, collaborating with other international and Israel architects.

Chhatrapati Shivaji International Airport – Terminal 2
Location: Mumbai, India
Completion Year: 2014
Area: 410,000 m²

SOM designed the new integrated domestic and international terminal at Mumbai’s Chhatrapati Shivaji International Airport (CSIA), working directly for the privatization group tasked with redeveloping the airport. The terminal will serve 40 million people per year. The design combines both International and Domestic operations, employing an innovative set of swing facilities to optimize utilization of the terminal across the 24-hour operational day. The design incorporates numerous commissioned works of art by Indian artists, as well as collections of Indian hand craft.

Changi International Airport – Terminal 3
Location: Changi, Singapore
Completion Year: 2007
Area: 380,000 m²

The most recent element in the central area of Singapore’s Changi Airport, the new terminal is crowned with a 22-acre, steel-truss supported, cable-braced roof. An automatic light modulation system contains glass skylights and thousands of aluminum louvers. During the day, these louvers can be positioned to limit or increase the amount of light so that no artificial illumination is necessary. At night, artificial light is reflected off the louvers to provide a uniform pattern of illumination. SOM designed the building enclosure and major long-span structure.

WORLD CLASS GATEWAY TERMINALS
King Abdul Aziz International Airport – Hajj Terminal
Location: Jeddah, Saudi Arabia
Completion Year: 1981
Area: 260,000 m²

For its Hajj Terminal design, SOM utilized the highly identifiable form of the Bedouin tent to create a marvel that was the world’s largest cable-stayed, fabric-roofed structure. Completed in 1981, the Hajj Terminal serves as the physically welcoming, culturally symbolic, and structurally innovative portal for over one million pilgrims annually.

Kunming Xiaoshao International Airport
Location: Kunming, Yunnan, China
Completion Year: 2007

SOM provided the concept design for the new airport at Kunming through an international design competition. The design was subsequently executed by the local design institute in China. The consolidated terminal will cater to 27 million passengers annually. Expansion would be achieved to the 60 million passenger level through a single satellite concourse that can be expanded incrementally.

Ninoy Aquino International Airport (NAIA)
Location: Manila, Philippines
Completion Year: 2002
Area: 176,000 m²

The International Passenger Terminal at Ninoy Aquino International Airport is the Philippines’ first privatized commercial airport development (it was also executed through a design-build contract). Designed to increase the airport’s capacity from six to ten million passengers annually, the new terminal is sited to reinforce its symbolic importance as an international gateway to the Philippines. The terminal plan also creates development opportunities for airport-related uses such as hotels, offices, retail, and conference facilities.
WORLD CLASS GATEWAY TERMINALS

San Francisco International Airport – International Terminal
Location: San Francisco, California
Completion Year: 2000
Area: 167,000 m²

This iconic structure creates a powerful identity for both the airport and the City of San Francisco. Its form and aesthetic stem directly from functional necessity—the roof’s wing-like form directly expresses the structural diagram of its bending forces. The building is one of the largest base-isolated structures in the world.

LaGuardia Airport – Central Terminal Modernization
Location: Queens, New York
Completion Year: 2020
Area: 121,000 m²

In the future LaGuardia is projected to reach 34 million annual passengers with 17.5 million to be served by the new Terminal. The new terminal is being designed as a common use facility with maximum airside and terminal flexibility to accommodate multiple airlines of varying sizes to serve the ever changing airline industry. The terminal will be a highly sustainable building with flexible, state of the art check-in and passenger security area, fully automated baggage handling systems with in-line security screening, a full range of concession offerings with easy access to the passenger areas and 38 contact aircraft stands.

Toronto Pearson International Airport – Terminal 1
Location: Toronto, Canada
Completion Year: 2003
Area: 372,000 m²

This new Terminal, the centerpiece of an overall development by the Greater Toronto Airport Authority, will accommodate approximately 29 million passengers annually by 2015. Together with four pier buildings that extend out into the airfield, the curved terminal will have an area of about four million square feet and provide a total of 77 gates. Stages I and II are complete. SOM is the lead architect in an association responsible for design and project management.
JFK International Airport – Terminal 4
Location: Queens, New York
Completion Year: 2001
Area: 139,000 m²

The three-level, state-of-the-art JFK Terminal is designed to serve seven million annual passengers and reasserts the airport’s place as the pre-eminent international gateway in North America. SOM has just completed (2013) the construction of a major expansion of the terminal to add nine widebody gates and expanded processing capacity.

Logan International Airport, International Gateway – Terminal E
Location: Boston Massachusetts
Completion Year: 2003
Area: 58,300 m²

A signature building in Logan International Airport’s $1 billion expansion, the new International Terminal creates a dramatic new image for Boston’s 75-year old airport. One of SOM’s central priorities is to strengthen the airport’s relationship with the city. Inside, passengers enjoy panoramic views of Boston Harbor through a sweeping glass curtain wall on the terminal’s south side. Outside, the vestibules’ crystalline forms is visible at night from downtown Boston.
EXPANDING CAPACITY, INCREASING EFFICIENCY
SOM’s planning and design of major terminal expansion projects is a testament not only to our design skill, but also our expertise in managing large and complex teams. Our expansion experience involves multi-airline terminals on tightly constrained sites where phasing, ongoing operations and passenger comfort are the highest priorities.
JFK Terminal 4 – Delta Expansion

Location: Queens, New York
Completion Year: 2013
Area: 46,500 m²

The expansion of Terminal 4 at JFK will accommodate the relocation of Delta Airlines operations to provide an estimated 11 million passengers with modern facilities, creating a comfortable and more efficient travel experience. The project also includes expanded shopping areas, a new 20,000 square foot Delta SkyLounge, and new domestic baggage claim facilities.

BWI – Marshall International Airport Expansion

Location: Baltimore, Maryland
Completion Year: 2013
Area: 16,800 m²

Due to the purchase of AirTran by Southwest, the airlines needed to consolidate their operations at BWI. Together, they represent 71% of the current passenger activity at the airport, totalling 15.6 MPPA. This consolidation represents a 30% increase in activity, necessitating new facilities that will expand the potential for non-aeronautical revenue and include enhanced passenger amenities. The project included a new security checkpoint, air side corridor, and widening of Pier C.

Hong Kong International Airport – Terminal 2

Location: Hong Kong, China
Completion Year: 2007
Area: 139,000 m²

Terminal 2 Skyplaza at Hong Kong International Airport is an innovative complex that comingles the functions of an intermodal transportation center with air passenger processing facilities, commercial office blocks, and extensive retail and entertainment offerings. The association of these normally separated functions is intended to enhance the service level, utilization, and convenience of all activities.
Dulles International Airport – Main Terminal Expansion
Location: Chantilly, Virginia
Completion Year: Ongoing
Area: 85,900 m²

SOM has been engaged in planning and design work at Dulles since 1985, when we completed the revised architectural master plan for the airport that has guided its growth as a major hub and national gateway. SOM planned and designed the terminal expansion according to Eero Saarinen’s original master plan, adding 85,900 m² to the building in seven phases.

Newark International Airport – Continental Airlines
Global Gateway Project
Location: Newark, New Jersey
Completion Year: 2002
Area: 96,200 m²

SOM has provided planning, architectural and engineering design services to Continental Airlines for a comprehensive renovation and expansion of their largest hub facility, Terminal C at Newark International Airport. The flared end of the new concourse allows for common food court seating, as well as retail concessions. The roof structure has north-facing clerestories that reduce the need for artificial lighting. Innovative gate elements permit all but one of the gates to be swing between international and domestic use at any time of the day. These features have served as a model for other facilities within the airline’s network.

Dublin Airport – Pier D Expansion
Location: Dublin, Ireland
Completion Year: 2007
Area: 14,000 m²

As part of Dublin Airport’s expansion, SOM created a masterplan for the airport and constructed a new 14-stand pier that services up to 10 million passengers each year. The new pier is linked to the existing terminal by a 350-meter elevated walkway that is partially suspended by an 85-meter-long skybridge, which provides passengers a spectacular view of the historic 1930’s-listed terminal space at Dublin Airport.
PLANNING THE FUTURE OF GLOBAL AIR TRAVEL
SOM’s Master Plans for airports focus on the future. Because air transportation is a vital nexus of industry and the demands on these complex buildings are unrelenting, it is essential that requirements for new or improved facilities be anticipated and accommodated long in advance. SOM considers the needs and demands of airport tenants, users and the general public while also anticipating the urban design implications of this evolving building type.
Kunming Xiaoshao International Airport Master Plan
AIRPORT MASTER PLANS

Hong Kong International Airport – SkyCity Master Plan
Location: Hong Kong, China
Completion Year: Ongoing
Area: 45 hectares

Hong Kong International Airport is a main gateway to Hong Kong and the People’s Republic of China. The city must retain its position as a hub city for international business throughout Asia. The Airport Authority has pursued the development of the commercial potential for the expansive stretch of land available within the NCD. Due to the proximity of the Terminal and commercial uses, the Master Plan strives to create a close symbiotic relationship between the two uses, resulting in a lively 24-hour Airport City.

Dublin Airport Master Plan
Location: Dublin, Ireland
Completion Year: 2003
Area: 1000 hectares

The master plan for Dublin Airport guides development for the next fifteen to twenty years, and allows for expansion and change as airport traffic doubles to 30 million passengers per year. Beginning with a thorough assessment of present throughput capacity of the terminal and concourses, the plan considered land use requirements of cargo, maintenance, and landside transportation, and all other airport sectors. Future rail access to the airport was accommodated. SOM developed a range of “possible futures” for the airport, different traffic growth scenarios, which were then used to compile a range of facility requirements.

Bahrain International Airport Master Plan
Location: Manama, Bahrain
Completion Year: 2007

SOM supported the Jacobs Consultancy in the development of the master plan to guide the growth of Bahrain International Airport. SOM participated in the key land use and physical planning decisions, including the relocation and reorganization of all ancillary airport sectors and the positioning of the second runway. The design called for a phased and flexible approach, beginning with the internal rationalization of the airport, while planning for an expansion to the north in the long term.
Abu Dhabi International Airport Master Plan
Location: Abu Dhabi, UAE
Completion Year: 2005
Area: 3,300 hectares

SOM’s Master Plan caters for expansion to 40 million passengers per annum, a 30-year planning horizon, assuring the long-term capacity of the airport. It calls for a new runway set at a separation of 2000m, a new terminal complex in the midfield, new ACTC, extensive new cargo areas with the potential of associated free trade zones, and abundant expansion capacity for all other sectors of airport activity. In addition, SOM has set aside areas for associated commercial and leisure development, as well as formulated development guidelines for the region around the airport.

San Jose International Airport Master Plan
Location: San Jose, California
Completion Year: 2002
Area: 195 hectares

SOM’s Terminal Area Concept and Transportation Access Master Plan refined the configuration of the terminals and the local and regional transportation systems. It also addressed design considerations for new terminal area facilities recommended in the city’s airport master plan. Lastly, it formulated a ground transportation plan for significantly improving surface access and public transportation opportunities. The development program also required a plan for transit service improvements with the goals of achieving a 15 percent transit mode split for airport trips by the year 2005 and improving connections with off-airport light-rail and commuter-rail systems.

Dulles International Airport – Master Plan Review
Location: Chantilly, Virginia
Completion Year: 1989
Area: 4,856 hectares

During the past three decades, Dulles has undergone enormous transformation into a major hub complex that serves the extended Washington metropolitan area. SOM began its relationship with Dulles and the Metropolitan Washington Airports Authority (MWAA) by providing master planning services. In preparing an updated plan, SOM completed a review of the original 1985 master plan. The review included an analysis of the airport’s position in the marketplace, passenger and operations goals, benchmarking and constraints.
Rail access to and within airports is an essential component of a sustainable transport network. SOM has planned and designed a full range of such facilities. The Singapore Changi rail station designed by SOM is a landmark and gateway itself, rising dramatically on either side of the central terminal area. At Hong Kong International Airport,
SOM led a team that integrated the existing Airport Express Station with the new terminal, the extension of the underground people mover system, as well as two surface transport modes—cross-boundary buses and the innovative airport ferry terminal SkyPier. The Dulles AeroTrain Station won the International Air Rail award in 2011.
Changi Airport Rail Station
Location: Changi, Singapore
Completion Year: 2001

SOM’s design for the Changi Airport Rail Terminal connects passengers to the newly extended subway line, and provides a pedestrian link between two of the airport’s three terminals. The centerpiece of the new station is an illuminated pedestrian bridge that spans the entire length of the concourse.

AeroTrain Station at Dulles International Airport
Location: Chantilly, Virginia
Completion Year: 2007

The Automated People Mover System has replaced the mobile lounges as the primary means of internal transportation for passengers between the main terminal and midfield concourses. This automated train system creates a more streamlined connection. The Automated People Mover System also anticipates the further expansion of the airport as more concourses are built in the midfield and a south terminal is envisioned in years to come. SOM designed the showpiece APM Station at the Main Terminal. This project won the 2011 AirRail project of the year award.

Hong Kong SkyPlaza Rail / Bus Interchange
Location: Hong Kong, China
Completion Year: 2007

Terminal 2 SkyPlaza functions as a unique interchange at the airport. Heavy rail connects the terminal to the city. An underground people mover connects the terminal to the ferry pier and the airside. A 35-slip cross boundary bus station connects the terminal to the PRC.
COMPONENTS OF SUCCESSFUL AIRPORTS
The New Economic Centers

SOM has combined our expertise in commercial building design and master planning with our airport planning practice to enhance the synergies of the airport city. Hong Kong and Airport City plans and proposals include those for Hong Kong International Airport - Terminal 2, Clark Air Force Base - Master Plan in the Philippines, Kunming Xiaoshao International Airport and Auckland Airport in New Zealand.

At Auckland, SOM integrated existing Aviation and Airport city master plans into a unified approach for the long-term development of Auckland International Airport. Planning studies include the development of options for the creation of a high-value airport city that can be implemented in a series of incremental stages in concert with the development of aviation infrastructure and facilities.
Amenities for Passenger Comfort

Dedication to service and passenger comfort has made Jet Airways one of India’s top airlines. Now the company is bringing the same dedication to service into its airport lounges, to give Premiere and First Class passengers a truly seamless experience of luxury travel. The new lounges will offer travelers a tranquil resting place, a lively social atmosphere, refreshing shower facilities, and a full suite of business amenities.

Within each location, interior spaces are defined by a system of wooden arches which shelter travelers like a tree canopy and create pockets of activity without separating the lounge into compartments. Like the representations of landscapes, rivers, and trees in Hindu architecture, the system draws inspiration from nature, blurring the distinction between interior and exterior to create a sense of both mass and intimacy.

The design fully integrates the technology needs of the contemporary traveler. The arches house electrical outlets to recharge portable devices and every lounge offers wireless Internet connectivity. A sophisticated Flight Information Display System (FIDS) presents information about the unique destinations Jet Airways serves. Electronic art walls use innovative technologies to create a stimulating visual backdrop.
Jet Airways Lounge - Hyderabad
Opposite: Jet Airways Lounge - Mumbai
The Key to Economic Sustainability

Non-aeronautical revenue accounts for a substantial percentage of airport revenue. With deep roots in private-sector commercial architecture, and an unmatched portfolio of aviation projects, SOM is uniquely positioned to maximize the revenue-generating potential of the airport as a whole and the core terminal complex in particular. Closely integrated Airport City development and well-connected cargo and airport-related free trade areas are complemented by revenue generation strategies in and around the terminal building. Retail concessions within the terminal can be arranged in ways to enhance sales and improve passenger satisfaction.

Larger facilities, such as hotels and conference centers, can be incorporated into the terminal, either airside or landside. Well placed and well designed airline lounges command higher rents and provide important amenities to high-value customers. Retail and dining concessions within the terminal are by now only some of the amenities provided to passengers in world class terminals.
Korean Air Lines Operations Center

Between 1989 and 1998, Korean Airlines added 48 jumbo jets to its fleet. In 1991, recognizing the need for a more modern flight operations center, KAL founder Cho ChoongHoon, hired SOM to design a facility that included repair and maintenance facilities, lounges for flight attendants and cabin crews, a health care center, cafeteria, general offices and a headquarters for airline executives.

SOM designed a creative and functional, 1.2 million square-meter, multi-purpose facility centered around a column-free 90x180-meter hangar that could accommodate two jumbo jets at the same time.

Around the hangar space is wrapped a 125,000 square-meter, 8-story annex building that included all of the airline’s non-repair and maintenance facilities including operations. Due to strict height and space limitations that resulted from the active air traffic, SOM devised a structure that could not only span the immense distance with very few columns, but also be constructed on the ground and hoisted into place within a matter of hours. Since its completion in 1995, the unique three-column, wing-like hangar roof has become a well-known symbol of KAL.
SOM Airports is a specialized practice within the firm, bringing together more than 50 experts in airport terminal planning and design with SOM’s leading architects and engineers. We offer a full range of airport planning and design services, ranging from airport master planning and feasibility studies, to detailed terminal design and airport cities.
Architects and planners collaborate with SOM’s structural, mechanical and electrical engineers on all airport building types. Our aim is to combine the highest level of operational efficiency and flexibility with landmark design to create lasting value for owners and operators and an enriched passenger experience.
Contact

Derek A.R. Moore, AIA, PH.D

Director
14 Wall Street
New York, NY 10005

derek.moore@som.com
Tel: (212) 298-7762